An Enhanced Genetic Algorithm for Structural Topology Optimization

نویسنده

  • S. Y. Wang
چکیده

Genetic Algorithms (GAs) have become a popular optimization tool for many areas of research and topology optimization an effective design tool for obtaining efficient and lighter structures. In this paper, a versatile, robust and enhanced genetic algorithm (GA) is proposed for structural topology optimization by using problem-specific knowledge. The original discrete black-and-white (0-1) problem is directly solved by using a bit-array representation method. To address the related pronounced connectivity issue effectively, the four-neighborhood connectivity is used to suppress the occurrence of checkerboard patterns. A simpler version of the perimeter control approach is developed to obtain a well-posed problem and the total number of hinges of each individual is explicitly penalized to achieve a hinge-free design. To handle the problem of representation degeneracy effectively, a recessive gene technique is applied to viable topologies while unusable topologies are penalized in a hierarchical manner. An efficient FEMbased function evaluation method is developed to reduce the computational cost. A dynamic penalty method is presented for the GA to convert the constrained optimization problem into an unconstrained problem without the possible degeneracy. With all these enhancements and appropriate choice of the GA operators, the present GA can achieve significant improvements in evolving into near-optimum solutions and viable topologies with checkerboard free, mesh independent and hinge-free characteristics. Numerical results show that the present GA can be more efficient and robust than the conventional GAs in solving the structural topology optimization problems of minimum compliance design, minimum weight design and optimal compliant mechanisms design. It is suggested that the present enhanced GA using problemspecific knowledge can be a powerful global search tool for structural topology optimization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

METAHEURISTIC-BASED SIZING AND TOPOLOGY OPTIMIZATION AND RELIABILITY ASSESSMENT OF SINGLE-LAYER LATTICE DOMES

Economy and safety are two important components in structural design process and stablishing a balance between them indeed results in improved structural performance specially in large-scale structures including space lattice domes. Topology optimization of geometrically nonlinear single-layer lamella, network, and geodesic lattice domes is implemented using enhanced colliding-bodies optimizati...

متن کامل

COMPOSITION OF ISOGEOMETRIC ANALYSIS WITH LEVEL SET METHOD FOR STRUCTURAL TOPOLOGY OPTIMIZATION

In the present paper, an approach is proposed for structural topology optimization based on combination of Radial Basis Function (RBF) Level Set Method (LSM) with Isogeometric Analysis (IGA). The corresponding combined algorithm is detailed. First, in this approach, the discrete problem is formulated in Isogeometric Analysis framework. The objective function based on compliance of particular lo...

متن کامل

A Hierarchy Topology Design Using a Hybrid Evolutionary Algorithm in Wireless Sensor Networks

Wireless sensor network a powerful network contains many wireless sensors with limited power resource, data processing, and transmission abilities. Wireless sensor capabilities including computational capacity, radio power, and memory capabilities are much limited. Moreover, to design a hierarchy topology, in addition to energy optimization, find an optimum clusters number and best location of ...

متن کامل

A New Approach of Backbone Topology Design Used by Combination of GA and PSO Algorithms

A number of algorithms based on the evolutionary processing have been proposed forcommunication networks backbone such as Genetic Algorithm (GA). However, there has beenlittle work on the SWARM optimization algorithms such as Particle Swarm Optimization(PSO) for backbone topology design. In this paper, the performance of PSO on GA isdiscussed and a new algorithm as PSOGA is proposed for the net...

متن کامل

A BINARY LEVEL SET METHOD FOR STRUCTURAL TOPOLOGY OPTIMIZATION

This paper proposes an effective algorithm based on the level set method (LSM) to solve shape and topology optimization problems. Since the conventional LSM has several limitations, a binary level set method (BLSM) is used instead. In the BLSM, the level set function can only take 1 and -1 values at convergence. Thus, it is related to phase-field methods. We don’t need to solve the Hamilton-Jac...

متن کامل

A Comparison Between GA and PSO Algorithms in Training ANN to Predict the Refractive Index of Binary Liquid Solutions

A total of 1099 data points consisting of alcohol-alcohol, alcohol-alkane, alkane-alkane, alcohol-amine and acid-acid binary solutions were collected from scientific literature to develop an appropriate artificial neural network (ANN) model. Temperature, molecular weight of the pure components, mole fraction of one component and the structural groups of the components were used as input paramet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005